حل مسأله زمانبندی کار کارگاهی چندهدفی انعطافپذیرِ پویا به وسیله الگوریتم ژنتیک توسعهیافته
Authors
Abstract:
In this paper, Multi-Objective Flexible Job-Shop scheduling with Parallel Machines in Dynamic manufacturing environment (MO-FDJSPM) is investigated. Moreover considering dynamical job-shop environment (jobs arrived in non-zero time), It contains two kinds of flexibility which is effective for improving operational manufacturing systems. The non-flexibility leads to scheduling program which have problems like useless loading machines, bottleneck machines, decreasing desirability sources and a poor function in just in time delivery. Regarding to the flexibility in manufacturing systems, a job could be processed not only in several stations (operational flexibility) but also on several parallel machines in each station (flexibility of parallel machines) which both of them are considered in this paper. In the recent researches about FJSPM and FDJSPM, the single objective models were assessed. Whereas in competitive conditions, decision-makers encountered with simultaneous multi-objective problems that a number of them could be completely conflict with each other. In this research, the objectives are makespan, mean flow time and mean tardiness. These objectives are adaptable to the concept of just-in-time and supply chain management. Since the problem is NP-hard, an improved Genetic Algorithm is proposed. Proposed GA compare with Genetic Programming (GP) and GA, the result demonstrate inherence proposed GA. The control parameters in proposed GA are dynamic and changed through the algorithm that leads to reducing the probability of early convergence and local optimum. The mean results for three flexibility levels show that there is 4.9%, 5.33% & 4.6% improvement in proposed GA compared with previous results.
similar resources
حل مسأله زمان بندی کار کارگاهی چندهدفی انعطاف پذیرِ پویا به وسیله الگوریتم ژنتیک توسعه یافته
تحقیق حاضر، علاوه بر پارامترهای پویایی و انعطاف پذیری، چندمعیاره بودن تابع هدف را نیز درنظر می گیرد. مسائل زمان بندی ماهیتاً مسائل پویای بوده و لحاظ نمودن انواع انعطاف پذیری ها در این قبیل مسائل، منجر به رفع مشکلات گلوگاهی، افزایش تولید، بهبود عملکرد سیستم و ایجاد مزیت رقابتی می شود. از سویی دیگر برای دستیابی به اهداف سازگار با فلسفه تولید بموقع و اهداف مدیریتی زنجیره تامین، اهداف زمان بندی در ا...
full textمسأله زمانبندی کار کارگاهی چندهدفی انعطافپذیر پویا با در نظر گرفتن محدودیت نگهداری و تعمیرات
In this paper, Multi-objective Flexible dynamic Job shop scheduling with maintenance constraints is investigated. In the recent researches the single objective models were assessed. Whereas in competitive conditions, decision makers encountered with simultaneous multi-objective problems that could be conflict with each other. In this research, the objectives are makespan, mean flow time and m...
full textروش ترکیبی جدید برای حل مسئله زمانبندی کار کارگاهی انعطافپذیر در شرایط چندهدفی به وسیله خوشهبندی پویا و کارای فضای جستجو
full text
الگوریتم ممتیک برای حل مسئله زمانبندی کار کارگاهی منعطف با امکان ایجاد وقفه در انجام فعالیتها
Flexible job shop scheduling problem )FJSP( is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. FJSP is NP-hard and mainly presents two difficulties. The first one is to assign each operation to a machine out of a set of capable machines, and the second one deals with sequencing the assigned operations on the ma...
full textبکارگیری الگوریتم ترکیبی بهینه سازی دسته ذرات برای حل مساله سنتی زمانبندی کار کارگاهی
The classical Job Shop Scheduling Problem (JSSP) is NP-hard problem in the strong sense. For this reason, different metaheuristic algorithms have been developed for solving the JSSP in recent years. The Particle Swarm Optimization (PSO), as a new metaheuristic algorithm, has applied to a few special classes of the problem. In this paper, a new PSO algorithm is developed for JSSP. First, a pr...
full textبهبود حافظه برای حل مسئله زمانبندی کار کارگاهی پویا
وقتی با یک جهان در حال تغییر مواجه میشوید، انسانها نهتنها به آینده بلکه به گذشته هم توجه میکنند. توجه کردن به راهحلهای مشابه، به ما در تصمیمگیری در آینده کمک میکند. زمانیکه با وضعیتی روبرو میشویم که قبلاً آن را تجربه کرده باشیم بهتر میتوانیم با آن روبرو شویم. اگر در حل مسائل بهینهسازی با ماهیتی پویا در هنگام جستجو، از اطلاعات گذشته داخل بهینهسازی و یادگیری استفاده شود، میتواند به ف...
full textMy Resources
Journal title
volume 21 issue 3
pages 1- 12
publication date 2010-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023